TISSUE-SPECIFIC STEM CELLS Function of Ezrin-Radixin-Moesin Proteins in Migration of Subventricular Zone-Derived Neuroblasts Following Traumatic Brain Injury
نویسندگان
چکیده
Throughout life, newly generated neuroblasts from the subventricular zone migrate toward the olfactory bulb through the rostral migratory stream. Upon brain injury, these migrating neuroblasts change their route and begin to migrate toward injured regions, which is one of the regenerative responses after brain damage. This injuryinduced migration is triggered by stromal cell-derived factor 1 (SDF1) released from microglia near the damaged site; however, it is still unclear how these cells transduce SDF1 signals and change their direction. In this study, we found that SDF1 promotes the phosphorylation of ezrinradixin-moesin (ERM) proteins, which are key molecules in organizing cell membrane and linking signals from the extracellular environment to the intracellular actin cytoskeleton. Blockade of ERM activation by overexpressing dominant-negative ERM (DN-ERM) efficiently perturbed the migration of neuroblasts. Considering that DN-ERMexpressing neuroblasts failed to maintain proper migratory cell morphology, it appears that ERM-dependent regulation of cell shape is required for the efficient migration of neuroblasts. These results suggest that ERM activation is an important step in the directional migration of neuroblasts in response to SDF1-CXCR4 signaling following brain injury. STEM CELLS 2013;31:1696–1705 Disclosure of potential conflicts of interest is found at the end of this article.
منابع مشابه
Radixin inhibition decreases adult neural progenitor cell migration and proliferation in vitro and in vivo
Neuronal progenitors capable of long distance migration are produced throughout life in the subventricular zone (SVZ). Migration from the SVZ is carried out along a well-defined pathway called the rostral migratory stream (RMS). Our recent finding of the specific expression of the cytoskeleton linker protein radixin in neuroblasts suggests a functional role for radixin in RMS migration. The ezr...
متن کاملO15: Using Stromal Cell-Derived Factor-I as Bio Active Motif in A Novel Self-Assembly Peptide Nanofiber Scaffold: an Approach to Improve Cell Therapy in Brain Injury
Traumatic brain injury (TBI) is one of the main causes of mortality and morbidity worldwide. Despite extensive investigations over the past few decades, no effective therapies exist to improve the brain function in patients with TBI. Neural tissue engineering is an attractive therapeutic approach to restore the brain structure and function of damaged tissue. Bioactive motif of Stromal cell-deri...
متن کاملInduced Expression of the Cytoskeleton Linker Protein Radixin in the Adult Brain
Neural stem and progenitor cells (NSPCs) proliferate throughout life in two regions of the brain, namely the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone of dentate gyrus in the hippocampus. In the adult SVZ, NSPCs give rise to neuroblasts that leave the SVZ for long distance migration along the rostral migratory stream (RMS), on their way to the olfactory bulb w...
متن کاملInflammatory regulators of redirected neural migration in the injured brain.
Brain injury following stroke or trauma induces the migration of neuroblasts derived from subventricular zone neural precursor cells (NPCs) towards the damaged tissue, where they then have the potential to contribute to repair. Enhancing the recruitment of new cells thus presents an enticing prospect for the development of new therapeutic approaches to treat brain injury; to this end, an unders...
متن کاملO13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats
Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...
متن کامل